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We show that replacing the usual sifting step of the standard quantum-key-distribution proto-
col BB84 [1] by a one-way reverse reconciliation procedure increases its robustness against photon-
number-splitting (pns) attacks to the level of the SARG04 protocol [2, 3] while keeping the raw key-rate
of BB84. This protocol, which uses the same state and detection than BB84, is the m = 4 member of
a protocol-family using m polarization states which we introduce here. We show that the robustness
of these protocols against pns attacks increases exponentially with m, and that the effective keyrate of

optimized weak coherent pulses decreases with the transmission T like T1+ 1
m−2 .

PACS numbers: 03.67.Ac, 03.67.Dd, 03.67.Hk

Over the last 25 years, quantum key distribution
(QKD) has emerged as the main application of quan-
tum information. In most experimental realizations [4],
the legitimate partners — traditionally named Alice and
Bob — use the BB84 protocol [1] with weak-coherent-
pulses (wcp), i.e. Alice sends polarized coherent states
to Bob, and Bob measures their polarization to obtain
the raw-key. Alice and Bob then post-select a subset of
the measurement to obtain the sifted-key from which
the cryptographic key is extracted. If Alice sends perfect
single-photons, there is no way for an eavesdropper —
traditionally named Eve — to learn anything about the
sifted key without introducing errors. But, with wcps,
Alice only approximates single-photon, and she some-
times sends multiphoton pulses, on which Eve can get all
the information through photon-number-splitting (pns)
attack [5]. SARG04 [2, 3] showed that, with the same
modulation and detection than BB84, one can construct
a protocol more robust against pns, since Eve only gains
partial information from 2 photons pulse and needs
to wait for the rarer 3 photons pulses to gain the full
information. However, for the same pulse intensity,
SARG04’s rate is the half of BB84 at low losses, because
of the lower rate of it sifting. As shown in [3] SARG04’s
robustness can be increased by using m polarizations in-
stead of 4, at the price of a lower sifting rate ∝ m−3. This
article shows that this price is not necessary, and that it
is possible to have the best of both protocols, i.e. BB84’s
rate and SARG04’s robustness against photon number-
splitting attacks.

BB84 and SARG04 are sifting based protocols i.e. pro-
tocols where a part of the data is “sifted away” because
Alice’s state and Bob’s measurement are not in the “same
basis”. We will look here at sifting-less protocols, i.e.
protocols where this discussion is absent, and therefore,
where the ”wrong-basis” data are kept in the raw-key.

Protocol description. Alice randomly choses one lin-
ear polarization and sends the corresponding phase-
randomized weak coherent pulse (wcp). Let m ≥ 3
the total number of possible polarizations. To simplify
the analysis, we will suppose that the polarizations are

uniformly distributed along a great circle of Poincaré’s
sphere. Let |0〉 and |1〉 be the state of two orthogonally
polarized single photons. If the pulse contains n photon,
Alice sends the state |x, n,m〉 := |xθm〉⊗n with θm:= 2π

m , x

uniformly chosen in ~0,m−1�, and |θ〉 := 1√
2

(

|0〉 + eiθ |1〉
)

.

If m = 4, one has the 4 states used in BB84, SARG04 as
well as LG09 [6].

Bob measures the polarization of the pulses after a
propagation into a channel of transmission T. The pub-
lic comparison of a small subset of the measurements
allows Alice and Bob to statistically determine the char-
acteristic of the channel, namely T and its qubit error
rate (qber). In this first analysis, we will suppose this
statistical evaluation to be exact, neglecting the finite
size effects [7]. We will also limit ourselves to the error-
less case, where the qber is 0, excepted in the conclusion
where the influence of errors is briefly studied.

There are several possibilities for Bob’s measurement.
We will limit Bob’s apparatus to single-photon detector
based set-ups, similar to the one used in the BB84 and
SARG04 protocols. This will prevent Alice and Bob to
extract all the information allowed by the Holevo bound
S(X:Y) = T log 2, or to use continuous-variable detection
set-up [6].

Since Bob’s measurement is based on single photon
detectors, Alice and Bob need to postselect-away the
event when Bob has received no photon i.e. when Bob’s
detectors do not click. This can be done by one-way
classical communication from Bob to Alice. The kept
events constitute a fraction 1 − e−Tµ ≃ Tµ of the sent
pulses if the sent wcp have a mean photon number of µ.
They constitute the raw key, X for Alice and Y for Bob.

When Bob receives a single photon, he makes the

povm

{

2
m

∣

∣

∣yθm + π
〉 〈

yθm + π
∣

∣

∣

}

y∈~0,m−1�
. The π dephasing

doesn’t change anything if m is even, but increases the
mutual information S(X:Y) between Alice and Bob when
m is odd. In particular, it ensures that, for any state sent
by Alice, one outcome (y = x) of Bob’s measurement is
impossible. One can then easily show S(Y) = log m;

P(y|x,m) = 1
m

(

1 − cos(y − x)θm
)

; (1)
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S(Y|X) = log m − 1

m

m−1
∑

k=0

(1 − cos kθm) log(1 − cos kθm);

(2)

S(X:Y) =
1

m

m−1
∑

k=0

(1 − cos kθm) log(1 − cos kθm). (3)

The mutual information between Alice and Bob S(X:Y|m)
decreases slightly with m, from log 3

2 = 0.5850 bits for

m = 3 to 1
2π

∫

(1 − cos kθ) log(1 − cos kθ)dθ = 0.4427 bits
in the continuous limit m → ∞. For m = 4, we have
S(X:Y|m = 4) = 1

2 log 2.
When Bob receives more than one photon, several de-

tectors can click. This gives him more information than
single clicks, so neglecting this case , as done above, is
pessimistic. This corresponds to Bob randomly chosing
between the various detection results.

In a reverse reconciliation (rr) scheme [8, 9], Alice
and Bob can share a common key of length S(X:Y) pro-
vided Bob sends to Alice S(Y|X) bits of information. For
example, when m = 4, Bob needs to send 1.5 bits per
pulse. This can be done by revealing his measurement
basis (1 bit/pulse) and using the syndrome of a good era-
sure correcting (see e.g. [10, Chapter 50]) code which
will be slightly over 1

2 bit long per pulse. Indeed, when
Bob has revealed his basis measurements, Alice knows
which bits of Y she knows (the one with the right basis),
and the one she does not know (the other ones), and this
corresponds to an erasure channel of rate 1

2 .
Eavesdropping. Their use of erasure correcting codes

instead of interactively throwing some bits away is at
the heart of the resistance of this protocol against pns
attacks : on 2-photon pulses, Eve can keep a copy of
the pulse sent by Alice, and, even if she knows the basis
of Bob’s measurement, she ignores whether Alice sent a
state in the right basis or not. Therefore, in this case, Eve
measurement has at best a 25% error-rate, giving her at
most h( 1

4 ) = 0.1887 bits of information — where h(·) is the
binary entropy — while Alice still has half a bit. The net
key rate of 2-photon pulses is then 0.3113 bits. In BB84,
on the contrary, Alice reveals her basis choice, living her
on equal footing with Eve for 2-photons pulses.

Note that when m is even, the above idea for the recon-
ciliation can be generalized i.e. Bob reveals log m − log 2
bits for the basis y mod m

2 and use the appropriate error
correcting code for the remaining information. We are
then in a situation where Alice has different known error
rates 1

2 (1 − cos(x − y mod m
2 )θm) for different bits while

Eve only sees the average error rate. The following para-
graphs will study the above affirmations more formally,
in the asymptotic and error-less regime.

Of course, if Alice sends perfect single photon pulses,
the lack of errors guarantees a perfect secrecy of the
S(X:Y) key. However, if Alice uses weak coherent pulses
(wcp) some attacks become possible without introduc-
ing errors, namely intercept resend with unambiguous state

discrimination (irud) and photon number splitting attacks
(pns), as well as a combination of the two.

In any case, since Alice’s pulses are phase randomized,
Eve optimal attack starts by a quantum non-demolition
measurement of the photon number n of Alice’s pulse
[5]. The state sent by Alice is then projected onto

|x, n,m〉 = |xθm〉⊗n = 2−
n
2 (|0〉 + eixθm |1〉)⊗n (4)

= 2−
n
2

2n−1
∑

b=0

ei‖b‖θm |b〉 , (5)

where |b〉 is the tensorial binary development of b and
‖b‖ its Hamming weight. Note that all terms with the
same Hamming weight w modulo m have the same phase
prefactor eiwθm . These

( n
w[m]

)

vectors are orthogonal. We
have defined

(

n

w[m]

)

:=

∞
∑

d=0

(

n

w + dm

)

, (6)

where we have used the usual convention for the bino-
mial coefficient

(n
w

)

= 0 for w > n. Let’s define, for each
w ∈ ~0,m − 1�,

|w[m]〉n :=
1

√

( n
w[m]

)

∑

b∈~0,2n−1�
b≡w[m]

|b〉 . (7)

We can then rewrite the state |x, n,m〉 as

|x, n,m〉 = 2−
n
2

m−1
∑

w=0

eiwθm

√

( n
w[m]

) |w[m]〉n . (8)

When Eve measures n photons, she can either block
the pulse, perform an irud attack or a pns attack.
irud attacks. If Eve makes an irud attack, her success

probability is given in [11] as

P(∆|m, n) = 2−nm min
w∈~0,m−1�

( n
w[m]

)

. (9)

This probability is not null iff n ≥ m − 1, and its value
increases each time n increases by 2. Its first nonzero
value is 2−m+1m for n ∈ {m + 1,m + 2}. If Eves blocks a
fraction bn of the n-photon pulses, these can be a the ones
where an unambiguous discrimination has failed. She
can then resend with no error a fraction un of the original
pulses as big as

un = max
( P(∆|n,m)

1−P(∆|n,m) bn; 1 − bn

)

. (10)

In other words, she can intercept and resend
P(∆|n,m)

1−P(∆|n,m)

pulses for each pulse she blocks, without introducing
any error.

On remaining pn = 1− bn − un pulses, she can perform
a pns attack, keeping n− 1 photons and transmitting the
remaining one unperturbed to Bob. We have

pn = min
(

1−P(∆|n,m)−bn

1−P(∆|n,m) ; 0
)

. (11)
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One can construct a Markov chain Y ↔ X →
|x, n − 1,m〉, and since the latter is the state held by Eve
when she performs a pns attack, S(Y:E|n, pns) < S(Y : X).
The inequality is strict because the last transition is
not reversible. In other words, pns attacks without
irud can never reduce the net rr-keyrate Kn = S(Y :
X) − S(Y:E|n, pns) to 0, contrarily to the BB84 protocol.

The net key rate is 0 when all transmitted pulses can
be explained by irud attacks, i.e. when ∀n, pn = 0. Let
Tc be the critical transmission below which our protocol
ceases to work. At Tc, all the 1 − e−Tcµ ≃ Tcµ transmitted

pulses correspond to the e−µ
∑∞

n=0
µn

n!P(∆|n,m) successful
irud attacks. We have then

Tc = − 1
µ

ln















1 − e−µ
∞
∑

n=0

µn

n!P(∆|n,m)















≃ m
2·m−1!

(

µ

2

)m−2
,

(12)
where the last approximation holds when µ ≪ 1. We
essentially have Tc ∝ µm−2, showing the exponentially
increasing robustness of the protocol for increasing m.
This dependency is the same as SARG04, but not as BB84,
where Tc ≃ µ2 .
pns attack. In order to compute the efficiency of the
pns-attack, one needs to compute the density matrices
associated with n-photon pulses. The density matrix
corresponding to the state defined in (8)

|x, n,m〉 〈x, n,m| = 2−n
m−1
∑

w,w′=0

ei(w−w′)xθm

√

( n
w[m]

)(w′[m]
n

)

× |w[m]〉 〈w′[m]| (13)

=

m−1
∑

D=1−m

eiDxθmMD,m,n, (14)

where we have defined, for any integer D ∈ ~1−m,m−1�,
the (shifted) m ×m diagonal matrix

MD,m,n:=2−n

m−1+min(0,D)
∑

w=min(0,D)

√

(w[m]
n

)(w+D[m]
n

) |w[m]〉 〈w +D[m]| .

(15)
Let ρn,m be the average n-photon state sent by Alice.

One has then

ρn,m =

m−1
∑

x=0

1
m |x, n,m〉 〈x, n,m| =M0,m,n. (16)

When Bob measures Y = y, and Eve keeps n photons,
her state conditioned on Bob’s measurement is given by

ρy,n,m =

m−1
∑

x=0

1
m (1 − cos(x − y)θm) |x, n〉 〈x, n| (17)

=M0 − e−iyθm

2 (Mm−1 +M−1) − eiyθm

2 (M−m+1 +M1).
(18)

FIG. 1: Key rates of the m-states protocols compared to m-state
SARG04 and BB84 with wcps for µ = 0.1 and m ∈ ~3, 6�. The
vertical lines represent the values of Tc given by (12).

FIG. 2: Key rates with optimized µ for BB84, the m-states pro-
tocol, m-state for m = 4 and m = 16.

Note that in the above equations, the indices m and n
have been omitted forMD for the sake of simplification.

The Holevo limit of the information Eve can gather on
Bob’s measurement through a collective pns attack is

S(Y:E|n, pns):=S(E|n, pns) − S(E|Y, n, pns) (19)

= S(ρn−1,m) − S(ρy,n−1,m). (20)

These entropies are easily computed numerically and
decrease slowly with n.

They are independent of m iff n ≤ m− 1, which means
that the corresponding S(Y:E) will also be identical in this
case. In other words, the information leaked to Eve in
m-state protocols are identical to the continuous m→ ∞
limit for n-photon pulses when n ≤ m − 2, and the only
difference at n = m − 1 comes from the irud attack.



4

Key-Rate. The net key rate K(T, µ) forwcpwithµ pho-
tons/pulse on average is therefore

K(T, µ) =

∞
∑

n=1

e−µ
µn

n!
pnKn with Kn:=S(X:Y) − (Y:E|n, pns)

(21)

=

∞
∑

n=1

e−µ
µn

n!
Kn −

∞
∑

n=1

e−µ
µn

n!
bn

Kn

1 − P(∆|n,m)
. (22)

When T ≥ Tc the optimal attack is for Eve to block the

pulses with the biggest values of Kn

1−P(∆|n,m) . This corre-

sponds only roughly to the pulses with the lowest pho-
ton number. The corresponding rates for fixed µ = 0.1
are shown in figure 1.

One can also numerically optimize µ for each value of
the transmission T, as shown in figure 2. If the optimal
key rate is achieved close to Tc, we have, for µ≪ 1,

K ≃ K′m−1

(

Tµ − P(∆|m − 1,m)
µm−1

m−1!

)

(23)

with K′
m−1

being the (m − 1)th value of the Kn

1−P(∆,n,m) co-

efficients in decreasing order. Optimizing this quantity
for µ is straightforward and gives

µopt ≃ 2
(

2·m−2!
m

) 1
m−2

T
1

m−2 (24)

Kopt ≃ K′m−1
2

m−1

(

2·m−2!
m

) 1
m−2

T1+ 1
m−2 (25)

i.e. the key rate essentially varies as K ∝ T1+ 1
m−2 with a

prefactor which slowly decreases with m. This approx-
imation seems in agreement with numerical results, at
least for reasonably low m (below 16). The bigger m is,
the closer one is to the ideal single-photon case, where
K = T

2 log 2.
Conclusion The sifting-less protocols described here

are as efficient as BB84 and more robust against pns-
attack.This robustness lies in the preservation of non-
orthogonality of the sent-states by the lack of sifting.

Furthermore, this also allows to extract a reason-
able key for high m, while benefiting of the robustness
brought by the increased overlap of the sent states, on
the contrary to the m-state SARG04 variant, which while
robust, have a sifting factor ∝ m−3 [3].

The most robust variant limit of this protocol is the
limit of continuous phase modulation m → ∞, which
actually prevents the irud attack. It is straightforward
to show that replacing the m-state povmused in the above
description by the simpler 4-State povm used in standard
BB84 does not change the key-rate in this limit.

Before using this protocol, we still need to investigate
its security in presence of a non-zero qber. For per-
fect single photons and a qber ǫ, one can bound Eve’s
information by writing the state shared by Alice, Bob

and Eve under the form [4] |ΨABE〉 =
√
λ1 |Φ+〉 |E1〉 +√

λ2 |Φ−〉 |E2〉+
√
λ3 |Φ+〉 |E3〉+

√
λ4 |Φ−〉 |E4〉, and optimiz-

ing Eve’s Holevo information S(Y:E). One then straight-
forwardly find S(Y:E|n = 1, ǫ) = h(ǫ). For m = 4, we
have S(X:Y) = 1

2 (log 2 − h(ǫ)), which gives a net key rate

K = 1
2 (log 2 − 3h(ǫ)), cancelling for a qber ǫ = 6.14%.

The expression is less elegant for other values of m, but
the critical value of ǫ does not change much, varying
between 6.89% for m = 3 and 5.93% for m → ∞. Of
course, for a practical application of these protocols, the
combination of qber and pns attacks still needs to be
investigated, as well as finite-size effects [7].

Another direction worth investigating would be an
unbalanced version of our protocol, similar to BB84 with
biased basis choice [12], allowing to double the key rate
to ∼ 1 bit/pulse instead of ∼ .5 in the low-loss regime.
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